
Averaging and Grids

Averaging

• There are many ways…
– Simple user-defined averages
– Averaging functions in MA(.average)
– Averaging functions in cdutil(.averager)

• Some detail on:
– Averaging over axes
– Weighted averaging

Simple user-defined averaging

• You can create your own simple averages using
arrays, slabs or variables in the usual way:
– Averaging an ensemble of temperatures:

av=(t1+t2+t3+t4+t5+t6)/6
– Averaging over 4 time steps:

t.shape
(4, 181, 360)
av=(t[0]+t[1]+t[2]+t[3])/4

• But you don’t retain your metadata.
• And you can’t average simply across axes within a

variable.

MA Averaging
• The MA module has an averaging

function:
MA.average(x, axis=0, weights=None,
returned=0)

– computes the average value of the non-masked elements of
x along the selected axis. If weights is given, it must match
the size and shape of x, and the value returned is:

– elements corresponding to those masked in x or weights are
ignored. If returned, a 2-tuple consisting of the average and
the sum of the weights is returned.

MA Averaging: example
• To calculate a set of zonal means:

>>> import MA
>>> # data is some array
>>> arr=MA.array(data)
>>> print arr.shape
(1,181,360)
>>> zm=MA.average(arr, axis=2)
>>> print zm.shape
(1,181)

NOTE: incorrect on your handouts!!!

The cdutil “averager” function

• The “averager” function is the key to spatial and
temporal averaging in CDAT.

• Masks are dealt with implicitly.
• It provides a powerful area averaging function.
• A convenient way of averaging your data giving you

control over the order of operations (i.e. which
dimensions are averaged over first) and also the
weighting for the different axes.

• You can pass your own array of weights for each
dimension or use the default (grid) weights or specify
equal weighting.

Usage of cdutil.averager

result = averager(V, axis=axisoptions,
weights=weightoptions, action=actionoptions,
returned=returnedoptions,
combinewts=combinewtsoptions)

axisoptions has to be a string. You can pass axis='tyx',
or '123', or 'x (plev)

weightoptions is one of 'generate’ | ‘weighted’ | 'equal' |
‘unweighted’ | array | Masked Variable

weightoptions: ‘generate’ or ‘weighted’ option

• Weights are generated using the bounds for the
specified axis.

• For latitude and longitude, the weights are calculated
using the area (see grid.getWeights()).

• For other axes weights are the difference between
the bounds (when the bounds are available).

• If the bounds are stored in the file being read in, then
those values are used. Otherwise, bounds are
generated as long as cdms.setAutoBounds('on') is
set (the default setting).

• If cdms.setAutoBounds() is set to 'off', then an Error
is raised.

Usage of cdutil.averager (continued)

actionoptions is 'average' | 'sum‘ [Default = 'average‘].
You can either return the weighted average or the

weighted sum of the data.

returnedoptions is 0 | 1 [Default = 0]
Implies sum of weights are not returned after averaging

operation. 1 implies the sum of weights after the
average operation is returned.

combinewtsoption is 0 | 1 [Default = 0]
0 implies weights passed for individual axes are not

combined into one weight array for the full variable V
before performing operation.

cdutil.averager – basic usage (1)

>>> import cdms, cdutil
>>> f=cdms.open(‘myvars.xml’)
>>> var=f(‘no10u’, time=slice(0,10))
>>> print var
no10u
array(array(10,181,360), type=f, has
651600 elements)

>>> av=cdutil.averager # shorthand to
function

>>> lon_average=av(var, axis=“x”)
>>> lon_average.shape
(10, 181)

cdutil.averager – basic usage (2)

>>> lat_average=av(var, axis=“y”)
>>> lat_average.shape
(10, 360)
>>> t_average=av(var, axis=“t”)
>>> t_average.shape
(181, 360)

cdutil.averager – Weights

• Use auto generated weights based on bounds for area
averaging:
area_av=av(var, axis=“xy”, weights=“generate”)
area_av.shape
(10,)
all_av=av(var, axis=“xyt”, weights=“generate”)
all_av.shape
()

• You can use the “area_weights” function to generate a
set of weights before averaging.
gen_weights = cdutil.area_weights(x)

Temporal averaging

• Averaging over time is a special problem in
climate data analysis.

• cdutil makes the extraction of time averages
and climatologies simple.

• Functions for annual, seasonal and monthly
averages and climatologies

• User-defined seasons (such as “FMA”).

Note about bounds: users must ensure that bounds are
set up correctly for temporal averaging to work
properly.

Pre-defined seasons and time periods

• DJF, MAM, JJA, SON (seasons)
• YEAR (annual means)
• ANNUALCYCLE (monthly means for each month of

the year)
• SEASONNALCYCLE (means for the 4 predefined

seasons)

Calculating climatologies

>>> import cdutil
The individual DJF (December-January-February)
seasons are extracted using
>>> djfs = cdutil.DJF(x)
To compute the DJF climatology of a variable x
>>> djfclim = cdutil.DJF.climatology(x)
To extract DJF seasonal anomalies (from

climatology)
>>> djf_anom = cdutil.DJF.departures(x)
The monthly anomalies for x are computed by:
>>> x_anom = cdutil.ANNUALCYCLE.departures(x)
Create your own season
>>> JJAS = cdutil.times.Seasons(‘JJAS’)

Grids in CDAT

• Why grids?
• The CDMS RectGrid class
• Regridding (interpolation)
• Horizontal regridding
• Vertical regridding
• SCRIP – regridding Generic grids

Why grids?

• In earth sciences, a horizontal grid is very common
domain description for a measured/modelled
phenomenon.

• A HorizontalGrid represents a latitude-longitude
coordinate system. In addition, it optionally describes
how lat-lon space is partitioned into cells. Specifically,
a HorizontalGrid:
– consists of a latitude and longitude coordinate axis.
– may have associated boundary arrays (bounds) describing

the grid cell boundaries.
– may optionally have an associated logical mask.

The CDMS RectGrid class and its operations.

• CDMS includes support for grids, commonly we
encounter RectGrids.

• Reading a grid from a variable:
grd=var.getGrid()
lat=grd.getLatitude()

• Creating a RectGrid:
cdms.createRectGrid(lat, lon, order,

type="generic", mask=None)

• For example:
lat=cdms.createAxis([1,2,3])
lat.designateLatitude()
lon=cdms.createAxis([0,2,4])
lon.designateLongitude()
grd=cdms.createRectGrid(lat, lon)

More useful grid operations
• Support for Gaussian grids:

cdms.createGaussianGrid(nlats, xorigin=0.0,
order=”yx”)

– Creates a Gaussian grid, with shape (nlats, 2*nlats).
– nlats is the number of latitudes.
– xorigin is the origin of the longitude axis.
– order is either “yx” (lat-lon, default) or “xy” (lon-lat)

• Support for diagnostic grids:
createZonalGrid(grid)

– Creates a zonal grid. The output grid has the same latitude
as the input grid, and a single longitude. This may be used to
calculate zonal averages via a regridding operation. grid is a
RectGrid.

createGlobalMeanGrid(grid)

– Generate a grid for calculating the global mean via a
regridding operation. The return grid is a single zone covering
the range of the input grid. grid is a RectGrid.

Support for other grid types

RectGrid - Associated latitude and longitude are
1-D axes, with strictly monotonic values.

CurveGrid - Latitude and longitude are 2-D
coordinate axes (Axis2D).

GenericGrid - Latitude and longitude are 1-D
auxiliary coordinate axes (AuxAxis1D)

Curve and Generic Grids

Regridding (interpolation)

T regrid variable u (from a rectangular grid) to a 96x192
rectangular Gaussian grid:

>>> import cdms
>>> f=cdms.open(‘mydata.nc’)
>>> var = f(’temp’)
>>> var.shape
(3, 72, 144)
>>> t63_grid = cdms.createGaussianGrid(96)
>>> var63 = u.regrid(t63_grid)
>>> var63.shape
(3, 96, 192)

#!/usr/local/cdat/bin/python
import cdms
from regrid import Regridder
f = cdms.open('temp.nc')
t= f.variables['t']
ingrid = t.getGrid()
outgrid = cdms.createUniformGrid(-90.0, 46,

4.0, 0.0, 72, 5.0)
regridFunc = Regridder(ingrid, outgrid)
newt = regridFunc(t)
import vcs
vcs.init().plot(t)
vcs.init().plot(newt)

Using createUniformGrid()

Using the Regridder class

• If you are going to use a regridding function
repeatedly it is more efficient to create your own
regridding function using the Regridder class:

import cdms, regrid
f=cdms.open(‘myfilio.nc’)
var1=f(‘surface_temperature’)
var2=f(‘no2t’)
(g1, g2)=var1.getGrid(), var2.getGrid()
regridFunc=regrid.Regridder(g1, g2)
regriddedVar1=regridFunc(var1)
diff=regriddedVar1-var2

Vertical regridding

• You can regrid pressure-level coordinates in the
vertical axis using the pressureRegrid method:

>>> var.shape
(3, 16, 32)
>>> var.getAxisIds()
[’level’, ’latitude’, ’longitude’]
levout is a pre-defined level axis
>>> len(levout)
2
>>> result = var.pressureRegrid(levout)
>>> result.shape
(2, 16, 32)

>>> import MV, cdms
>>> f=cdms.open('temp.ctl')
>>> t=f('t')
>>> t.getLevel()[:]
[1000., 925., 850., 775., 700., 600., 500.,
400., 300., 250., 200., 150., 100., 70.,
50., 30., 20., 10., 7., 5., 3.,
2., 1.,]
>>> t.shape
(1, 23, 181, 360)
>>> nl=cdms.createAxis(MV.array([976.0, 831.0,
221.0]))
>>> nl.designateLevel()
>>> t_regridded=t.pressureRegrid(nl)
>>> t_regridded.shape
(1, 3, 181, 360)
>>> t_regridded.getLevel()[:]
[976., 831., 221.,]

Vertical regridding: an example

SCRIP – regridding irregular grids (1)

• CDAT now supports irregular grids that can be
interpolated using the SCRIP (Spherical Coordinate
Re-mapping and Interpolation Package) package (not
provided with CDAT) as follows:

– Obtain or generate the source and target grids in SCRIP
NetCDF format. A CDMS grid can be written to a NetCDF
file, in SCRIP format, using the writeScripGrid() method.

– Edit the input namelist file scrip_in to reference the grids
and select the method of interpolation, either conservative,
bilinear, bicubic, or distanceweighted.

– See the SCRIP documentation for detailed instructions:
http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

http://climate.lanl.gov/Software/SCRIP/SCRIPusers.pdf

SCRIP – regridding irregular grids (2)

– Run the scrip executable to generate a re-mapping file containing
the transformation coefficients.

– In CDMS, open the re-mapping file and create a regridder
function with the readRegridder() method.

– Call the regridder function on the input variable, defined on the
source grid. The return value is the variable interpolated to the
new grid. Note that the variable may have more than two
dimensions. Also note that the input arguments to the regridder
function depend on the type of regridder. For example, the
bicubic interpolation has additional arguments for the gradients of
the variable.

	Averaging and Grids
	Averaging
	Simple user-defined averaging
	MA Averaging
	MA Averaging: example
	The cdutil “averager” function
	Usage of cdutil.averager
	weightoptions: ‘generate’ or ‘weighted’ option
	Usage of cdutil.averager (continued)
	cdutil.averager – basic usage (1)
	cdutil.averager – basic usage (2)
	cdutil.averager – Weights
	Temporal averaging
	Pre-defined seasons and time periods
	Calculating climatologies
	Grids in CDAT
	Why grids?
	The CDMS RectGrid class and its operations.
	More useful grid operations
	Support for other grid types
	Curve and Generic Grids
	Regridding (interpolation)
	Using createUniformGrid()
	Using the Regridder class
	Vertical regridding
	Vertical regridding: an example
	SCRIP – regridding irregular grids (1)
	SCRIP – regridding irregular grids (2)

